Overview of tools for the measurement of the orbital volume and their applications to orbital surgery

Published:September 19, 2020DOI:


      There are numerous applications in craniofacial surgery with orbital volume (OV) modification. The careful management of the OV is fundamental to obtain good esthetic and functional results in orbital surgery. With the growth of computer-aided design – computer-aided manufacturing (CAD-CAM) technologies, patient-specific implants and custom-made reconstruction are being used increasingly. The precise measurement of the OV before surgery is becoming a necessity for craniofacial surgeons. There is no consensus on orbital volume measurements (OVMs). Manual segmentation of computed tomography (CT) images is the most used method to determine the OV, but it is time-consuming and very sensitive to operator errors. Here, we describe the various methods of orbital volumetry validated in the literature that can be used by surgeons in preoperative planning of orbital surgery. We also describe the leading software employed for these methods and discuss clinical use (posttraumatic enophthalmos prediction and orbital reconstruction) in which OVMs are important.


      To read this article in full you will need to make a payment


      Subscribe to Journal of Plastic, Reconstructive & Aesthetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Koppel D.A.
        • Foy R.H.
        • McCaul J.A.
        • Logan J.
        • Hadley D.M.
        • Ayoub A
        The reliability of “analyze” software in measuring orbital volume utilizing CT-derived data.
        J Cranio Maxillofac Surg. 2003; 31: 88-91
        • Bontzos G.
        • Mazonakis M.
        • Papadaki E.
        • et al.
        Ex vivo orbital volumetry using stereology and CT imaging: a comparison with manual planimetry.
        Eur Radiol. 2018; 29: 1065-1374
        • Ramieri G.
        • Spada M.C.
        • Bianchi S.D.
        • Berrone S
        Dimensions and volumes of the orbit and orbital fat in posttraumatic enophthalmos.
        Dentomaxillofacial Radiol. 2000; 29: 302-311
        • Whitehouse R.W.
        • Batterbury M.
        • Jackson A.
        • Noble J.L
        Prediction of enophthalmos by computed tomography after “blow out” orbital fracture.
        Br J Ophthalmol. 1994; 78: 618-620
        • Bite U.
        • Jackson I.T.
        • Forbes G.S.
        • Gehring D.G
        Orbital volume measurements in enophthalmos using three-dimensional CT imaging.
        Plast Reconstr Surg. 1985; 75: 502-508
        • Ahn H.B.
        • Ryu W.Y.
        • Yoo K.W.
        • et al.
        Prediction of enophthalmos by computer-based volume measurement of orbital fractures in a Korean population.
        Ophthal Plast Reconstr Surg. 2008; 24: 36-39
        • Osguthorpe J.D.
        Orbital wall fractures: evaluation and management.
        Otolaryngol Neck Surg. 1991; 105: 702-707
        • Jalbert F.
        • Lauwers F.
        Les implants sur mesure en reconstruction craniofaciale.
        Rev Stomatol Chir Maxillo Faciale Chir Orale. 2013; 114: 211-218
        • Jansen J.
        • Schreurs R.
        • Dubois L.
        • Maal T.J.J.
        • Gooris P.J.J.
        • Becking A.G
        Orbital volume analysis: validation of a semi-automatic software segmentation method.
        Int J Comput Assist Radiol Surg. 2016; 11: 11-18
        • Cooper W.C.
        A method for volume determination of the orbit and its contents by high resolution axial tomography and quantitative digital image analysis.
        Trans Am Ophthalmol Soc. 1985; 83: 546-609
        • Osaki T.H.
        • de Castro D.K.
        • Yabumoto C.
        • et al.
        Comparison of methodologies in volumetric orbitometry.
        Ophthal Plast Reconstr Surg. 2013; 29: 431-436
        • P'an T.H.
        Measurement of the Chinese orbit.
        J Anat. 1933; 67: 596-598
        • Alexander J.C.
        • Anderson J.E.
        • Hill J.C
        The determination of orbital volume.
        Trans Can Ophthalmol Soc. 1961; 24: 105-111
        • Schultz A.
        The cranial capacity and the orbital volume of hominoids according to age and sex.
        Homenaje a Juan Comas en su 65 Aniversario, Editorial libros. 2. 1965: 337-357
        • Sarnat B.G.
        The imprint method to determine orbital volume in the rabbit.
        Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 1970; 160: 142-151
        • Abujamra S.
        • Magalhaes P.
        • Abucham J
        Radiovolumetria da orbita.
        Arq Bras Oftal. 1983; 46: 11-14
        • Forbes G.
        • Gehring D.
        • Gorman C.
        • Brennan M.
        • Jackson I
        Volume measurements of normal orbital structures by computed tomographic analysis.
        Am J Roentgenol. 1985; 145: 149-154
        • Deveci M.
        • Oztürk S.
        • Sengezer M.
        • et al.
        Measurement of orbital volume by a 3-dimensional software program: an experimental study.
        J Oral Maxillofac Surg. 2000; 58: 645-648
        • McGurk M.
        • Whitehouse R.W.
        • Taylor P.M.
        • Swinson B
        Orbital volume measured by a low-dose CT scanning technique.
        Dentomaxillofacial Radiol. 1992; 21: 70-72
        • Strong E.B.
        • Fuller S.C.
        • Chahal H.S
        Computer-aided analysis of orbital volume: a novel technique.
        Ophthal Plast Reconstr Surg. 2013; 29: 1-5
        • Shyu V.B.-.H.
        • Hsu C.-.E.
        • Chen C.
        • Chen C.-.T
        3D-assisted quantitative assessment of orbital volume using an open-source software platform in a Taiwanese population.
        PLoS ONE. 2015; 10e0119589
        • Regensburg N.I.
        • Kok P.H.B.
        • Zonneveld F.W.
        • et al.
        A new and validated CT-based method for the calculation of orbital soft tissue volumes.
        Investig Opthalmology Vis Sci. 2008; 49: 1758
        • Manson P.N.
        • Grivas A.
        • Rosenbaum A.
        • Vannier M.
        • Zinreich J.
        • Iliff N
        Studies on enophthalmos: II. The measurement of orbital injuries and their treatment by quantitative computed tomography.
        Plast Reconstr Surg. 1986; 77: 203-214
        • Raskin E.M.
        • Millman A.L.
        • Lubkin V.
        • della Rocca R.C.
        • Lisman R.D.
        • Maher E.A
        Prediction of late enophthalmos by volumetric analysis of orbital fractures.
        Ophthal Plast Reconstr Surg. 1998; 14: 19-26
        • Sugiura K.
        • Yamada H.
        • Okumoto T.
        • Inoue Y.
        • Onishi S
        Quantitative assessment of orbital fractures in Asian patients: CT measurement of orbital volume.
        J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg. 2017; 45: 1944-1947
        • Mohajerani H.
        • Jafari S.M.
        • Dehghanpour Barouj M.
        • Manoochehri N.
        • Tabrizi R
        Does orbital volume change using the mirror technique have a correlation with posttraumatic enophthalmos?.
        J Craniofac Surg. 2019; 30: e369-e372
        • Ebrahimi A.
        • Kalantar Motamedi M.H.
        • Rasouli H.R.
        • Naghdi N
        Enophthalmos and orbital volume changes in zygomaticomaxillary complex fractures: is there a correlation between them?.
        J Oral Maxillofac Surg. 2019; 77 (134.e1-134.e9)
        • Schönegg D.
        • Wagner M.
        • Schumann P.
        • et al.
        Correlation between increased orbital volume and enophthalmos and diplopia in patients with fractures of the orbital floor or the medial orbital wall.
        J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg. 2018; 46: 1544-1549
        • Choi S.H.
        • Kang D.H.
        • Gu J.H
        The correlation between the orbital volume ratio and enophthalmos in unoperated blowout fractures.
        Arch Plast Surg. 2016; 43: 518-522
        • Gomes de Oliveira P.
        • Perry da Câmara C.
        • Valejo Coelho P
        Intra- and interreader variability of orbital volume quantification using 3D computed tomography for reconstructed orbital fractures.
        J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg. 2019; 47: 1060-1064
        • Diaconu S.C.
        • Dreizin D.
        • Uluer M.
        • Mossop C.
        • Grant M.P.
        • Nam A.J
        The validity and reliability of computed tomography orbital volume measurements.
        J Cranio Maxillofac Surg. 2017; 45: 1552-1557
        • Oh S.A.
        • Aum J.H.
        • Kang D.H.
        • Gu J.H
        Change of the orbital volume ratio in pure blow-out fractures depending on fracture location.
        J Craniofac Surg. 2013; 24: 1083-1087
        • Hoşal B.M.
        • Beatty R.L.
        Diplopia and enophthalmos after surgical repair of blowout fracture.
        Orbit Amst Neth. 2002; 21: 27-33
        • Choi S.H.
        • Kang D.H.
        Prediction of late enophthalmos using preoperative orbital volume and fracture area measurements in blowout fracture.
        J Craniofac Surg. 2017; 28: 1717-1720
        • Yang J.-.H.
        • Hwang S.B.
        • Shin J.Y.
        • Roh S.-.G.
        • Chang S.C.
        • Lee N.-.H
        3-dimensional volumetric analysis of relationship between the orbital volume ratio and enophthalmos in unoperated blowout fractures.
        J Oral Maxillofac Surg. 2018; 77: 1847-1854
        • Parsons G.S.
        • Mathog R.H.
        Orbital wall and volume relationships.
        Arch Otolaryngol Head Neck Surg. 1988; 114: 743-747
        • Andrades P.
        • Cuevas P.
        • Hernández R.
        • Danilla S.
        • Villalobos R
        Characterization of the orbital volume in normal population.
        J Cranio Maxillofac Surg. 2018; 46: 594-599
        • Lieger O.
        • Richards R.
        • Liu M.
        • Lloyd T
        Computer-assisted design and manufacture of implants in the late reconstruction of extensive orbital fractures.
        Arch Facial Plast Surg. 2010; 12: 186-191
        • Tang W.
        • Guo L.
        • Long J.
        • et al.
        Individual design and rapid prototyping in reconstruction of orbital wall defects.
        J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2010; 68: 562-570
        • Pedemonte C.
        • Sáez F.
        • Vargas I.
        • González L.E.
        • Canales M.
        • Salazar K
        Can customized implants correct enophthalmos and delayed diplopia in post-traumatic orbital deformities? A volumetric analysis.
        Int J Oral Maxillofac Surg. 2016; 45: 1086-1094
        • Zimmerer R.M.
        • Ellis E.
        • Aniceto G.S.
        • et al.
        A prospective multicenter study to compare the precision of posttraumatic internal orbital reconstruction with standard preformed and individualized orbital implants.
        J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg. 2016; 44: 1485-1497
        • Scolozzi P.
        Applications of 3D orbital computer-assisted surgery (CAS).
        J Stomatol Oral Maxillofac Surg. 2017; 118: 217-223
        • Fan X.
        • Li J.
        • Zhu J.
        • Li H.
        • Zhang D
        Computer-assisted orbital volume measurement in the surgical correction of late enophthalmos caused by blowout fractures.
        Ophthal Plast Reconstr Surg. 2003; 19: 207-211
        • Nicot R.
        • Schlund M.
        • Sentucq C.
        • Raoul G
        A new orbito-zygomatic complex reconstruction technique using computer-aided design and manufacturing–assisted harvest of autologous calvarial bone in cases of orbito-zygomatic benign tumor.
        J Oral Maxillofac Surg. 2018; 77: 1082-1091
        • Rana M.
        • Chui C.H.K.
        • Wagner M.
        • Zimmerer R.
        • Rana M.
        • Gellrich N.-.C
        Increasing the accuracy of orbital reconstruction with selective laser-melted patient-specific implants combined with intraoperative navigation.
        J Oral Maxillofac Surg. 2015; 73: 1113-1118
        • Kim Y.C.
        • Min K.H.
        • Choi J.W.
        • Koh K.S.
        • Oh T.S.
        • Jeong W.S
        Patient-specific puzzle implant preformed with 3D-printed rapid prototype model for combined orbital floor and medial wall fracture.
        J Plast Reconstr Aesthet Surg. 2018; 71: 496-503
        • Sozzi D.
        • Gibelli D.
        • Canzi G.
        • et al.
        Assessing the precision of posttraumatic orbital reconstruction through “mirror” orbital superimposition: a novel approach for testing the anatomical accuracy.
        J Cranio Maxillofac Surg. 2018; 46: 1258-1262
        • Wi J.M.
        • Sung K.H.
        • Chi M
        Orbital volume restoration rate after orbital fracture”; a CT-based orbital volume measurement for evaluation of orbital wall reconstructive effect.
        Eye Lond Engl. 2017; 31: 713-719
        • Gander T.
        • Essig H.
        • Metzler P.
        • et al.
        Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures.
        J Cranio Maxillofac Surg. 2015; 43: 126-130
        • Zieliński R.
        • Malińska M.
        • Kozakiewicz M
        Classical versus custom orbital wall reconstruction: selected factors regarding surgery and hospitalization.
        J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg. 2017; 45: 710-715
        • Klein M.
        • Glatzer C.
        Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor.
        Plast Reconstr Surg. 2006; 117: 565-570
        • Modabber A.
        • Gerressen M.
        • Ayoub N.
        • et al.
        Computer-assisted zygoma reconstruction with vascularized iliac crest bone graft.
        Int J Med Robot Comput Assist Surg. 2013; 9: 497-502
        • Tahiri Y.
        • Taylor J.A.
        In support of using computer-aided design and modeling for periorbital osteotomies.
        J Craniofac Surg. 2015; 26: 100-103
        • Schlund M.
        • Paré A.
        • Joly A.
        • Laure B
        Computer-assisted surgery in facial bipartition surgery.
        J Oral Maxillofac Surg. 2018; 76 (1094.e1-1094.e7)