Three-dimensional scanners for soft-tissue facial assessment in clinical practice

Published:August 24, 2020DOI:



      The quantitative assessment of facial appearance and function is critical in the process of restoring normality and thus minimising morbidity in patients with facial deformities. Three-dimensional (3D) scanners have increasingly been applied in clinical settings to circumvent the issues associated with standard approaches, namely, subjectivity. This study aimed to summarise the current literature on the accuracy, reliability, and usability of 3D scanning technologies for soft-tissue facial assessment.


      Medline, EMBASE, and Web of Science were searched for studies assessing the accuracy, reliability, and/or clinical usability of 3D scanners in assessing facial morphology. All results were filtered by title, abstract, and finally by full text for relevance.


      Eight hundred and thirty-seven results were filtered down to 41 articles that were included in this review. Articles were categorised depending on the 3D visualising principle of the scanner being tested: laser-based scanning, stereophotogrammetry, structured-light scanning, or RGB-D (red, green, blue-depth) sensors.


      Of the traditional 3D scanners evaluated in the literature, stereophotogrammetric systems most consistently demonstrate excellent accuracy and reliability in the collection of 3D facial scans. Due to their cost, size, and complexity, these systems are often unsuitable for incorporation into clinical environments with limited availability of resources, space, and time. Recently developed RGB-D sensors can collect accurate static and dynamic 3D facial scans without many of these disadvantages. Still, further improvements in their technical specifications and a greater focus on the development of automated facial assessment software is needed before RGB-D sensors can be universally accepted as a new gold-standard for soft-tissue facial assessment.


      To read this article in full you will need to make a payment


      Subscribe to Journal of Plastic, Reconstructive & Aesthetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Staples M.P.
        • Elwood M.
        • Burton R.C.
        • Williams J.L.
        • Marks R.
        • Giles G.G
        Non-melanoma skin cancer in Australia: the 2002 national survey and trends since 1985.
        Med J Aust. 2006; 184: 6-10
        • Eviston T.J.
        • Croxson G.R.
        • Kennedy P.G.
        • Hadlock T.
        • Krishnan A.V
        Bell's palsy: aetiology, clinical features and multidisciplinary care.
        J Neurol Neurosurg Psychiatry. 2015; 86: 1356-1361
        • Coulson S.E.
        • O'Dwyer N J.
        • Adams R.D.
        • Croxson G.R
        Expression of emotion and quality of life after facial nerve paralysis.
        Otol Neurotol. 2004; 25: 1014-1019
        • Borah G.L.
        • Rankin M.K.
        Appearance is a function of the face.
        Plast Reconstr Surg. 2010; 125: 873-878
        • Ishii L.
        • Godoy A.
        • Encarnacion C.O.
        • Byrne P.J.
        • Boahene K.D.
        • Ishii M
        Not just another face in the crowd: society's perceptions of facial paralysis.
        Laryngoscope. 2012; 122: 533-538
        • Lindsay R.W.
        • Bhama P.
        • Hadlock T.A
        Quality-of-life improvement after free gracilis muscle transfer for smile restoration in patients with facial paralysis.
        JAMA Facial Plast Surg. 2014; 16: 419-424
        • Manusov V.
        • Patterson M.L.
        Manusov V Patterson ML SAGE Publications, Thousand Oaks, California2006
        • Siemionow M.
        • Sonmez E.
        Face as an organ.
        Ann Plast Surg. 2008; 61: 345-352
        • Aldridge K.
        • George I.D.
        • Cole K.K.
        • et al.
        Facial phenotypes in subgroups of prepubertal boys with autism spectrum disorders are correlated with clinical phenotypes.
        Mol Autism. 2011; 2: 15
        • Geros A.
        • Horta R.
        • Aguiar P
        Facegram - Objective quantitative analysis in facial reconstructive surgery.
        J Biomed Inform X. 2016; 61: 1-9
        • House J.W.
        • Brackmann D.E
        Facial nerve grading system.
        Otolaryngol Head Neck Surg. 1985; 93: 146-147
        • Ross B.G.
        • Fradet G.
        • Nedzelski J.M
        Development of a sensitive clinical facial grading system.
        Otolaryngol Head Neck Surg. 1996; 114: 380-386
        • Coulson S.E
        Assessing physiotherapy rehabilitation outcomes following facial nerve paralysis.
        Australian Journal of Otolaryngology. 1995; 2: 20-24
        • Banks C.A.
        • Bhama P.K.
        • Park J.
        • Hadlock C.R.
        • Hadlock T.A
        Clinician-Graded Electronic Facial Paralysis Assessment: the eFACE.
        Plast Reconstr Surg. 2015; 136: 223-230
        • Howells D.J.
        • Shaw W.C.
        The validity and reliability of ratings of dental and facial attractiveness for epidemiologic use.
        Am J Ortho. 1985; 88: 402-408
        • Lee D.Y.
        • Kim H.S.
        • Kim S.Y.
        • Park K.S.
        • Kim Y.H
        Comparison between subjective scoring and computer-based asymmetry assessment in facial nerve palsy.
        J Audiol Otol. 2019; 23: 53-58
        • Reitzen S.D.
        • Babb J.S.
        • Lalwani A.K
        Significance and reliability of the House-Brackmann grading system for regional facial nerve function.
        Otolaryngol Head Neck Surg. 2009; 140: 154-158
        • Sawai N.
        • Hato N.
        • Hakuba N.
        • Takahashi H.
        • Okada M.
        • Gyo K
        Objective assessment of the severity of unilateral facial palsy using OKAO Vision facial image analysis software.
        Acta Otolaryngol Case Rep. 2012; 132: 1013-1017
        • Hadlock T.A.
        • Urban L.S.
        Toward a universal, automated facial measurement tool in facial reanimation.
        Arch Facial Plast Surg. 2012; 14: 277-282
        • Baude M.
        • Hutin E.
        • Gracies J.M
        A bidimensional system of facial movement analysis conception and reliability in adults.
        Biomed Res Int. 2015; 2015: 8
        • Kim H.S.
        • Kim S.Y.
        • Kim Y.H.
        • Park K.S
        A smartphone-based automatic diagnosis system for facial nerve palsy.
        Sensors. 2015; 15: 26756-26768
        • Neely J.G.
        • Wang K.X.
        • Shapland C.A.
        • Sehizadeh A.
        • Wang A
        Computerized objective measurement of facial motion: normal variation and test-retest reliability.
        Otol Neurotol. 2010; 31: 1488-1492
        • Wang T.
        • Zhang S.
        • Dong J.
        • La Liu
        • Yu H
        Automatic evaluation of the degree of facial nerve paralysis.
        Multimed Tools Appl. 2016; 75: 893-908
        • Meier-Gallati V.
        • Scriba H.
        • Fisch U
        Objective scaling of facial nerve function based on area analysis (OSCAR).
        Otolaryngol Head Neck Surg. 1998; 118: 545-550
        • McGrenary S.
        • O'Reilly B.F.
        • Soraghan J.J
        Objective grading of facial paralysis using artificial intelligence analysis of video data.
        in: Paper presented at: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05). 2005
        • Yuen K.
        • Inokuchi I.
        • Maeta M.
        • Kawakami S.I.
        • Masuda Y
        Evaluation of facial palsy by moire topography index.
        Otolaryngol Head Neck Surg. 1997; 117: 567-572
        • Rogers C.R.
        • Schmidt K.L.
        • VanSwearingen J.M.
        • et al.
        Automated facial image analysis: detecting improvement in abnormal facial movement after treatment with botulinum toxin A.
        Ann Plast Surg. 2007; 58: 39-47
        • Wachtman G.S.
        • Cohn J.F.
        • VanSwearingen J.M.
        • Manders E.K
        Automated tracking of facial features in patients with facial neuromuscular dysfunction.
        Plast Reconstr Surg. 2001; 107: 1124-1133
        • Metzler P.
        • Bruegger L.S.
        • Kruse Gujer A.L.
        • et al.
        Craniofacial landmarks in young children: how reliable are measurements based on 3-dimensional imaging?.
        J Craniofac Surg. 2012; 23: 1790-1795
        • Tollefson T.T.
        • Sykes J.M.
        Computer imaging software for profile photograph analysis.
        Arch Facial Plast Surg. 2007; 9: 113-119
        • Zhao Y.J.
        • Xiong Y.X.
        • Wang Y
        Three-dimensional accuracy of facial scan for facial deformities in clinics: a new evaluation method for facial scanner accuracy.
        PLoS ONE. 2017; 12e0169402
        • Deli R.
        • Galantucci L.M.
        • Laino A.
        • et al.
        Three-dimensional methodology for photogrammetric acquisition of the soft tissues of the face: a new clinical-instrumental protocol.
        Prog Orth. 2013; 14: 32
        • Wang T.T.
        • Wessels L.
        • Hussain G.
        • Merten S
        Discriminative thresholds in facial asymmetry: a review of the literature.
        Aesthet Surg J. 2017; 37: 375-385
        • Claes P.
        • Walters M.
        • Clement J
        Improved facial outcome assessment using a 3D anthropometric mask.
        Int J Oral Maxillofac Surg. 2012; 41: 324-330
        • Fattah A.Y.
        • Gavilan J.
        • Hadlock T.A.
        • et al.
        Survey of methods of facial palsy documentation in use by members of the Sir Charles Bell Society.
        Laryngoscope. 2014; 124: 2247-2251
        • Gaber A.
        • Faher M.F.
        • Waned M.A
        Automated grading of facial paralysis using the Kinect v2: a proof of concept study.
        in: Paper presented at: 2015 International Conference on Virtual Rehabilitation 9-12 June. 2015
        • Gaber A.
        • Taher M.F.
        • Wahed M.A
        Quantifying facial paralysis using the Kinect v2.
        in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015
        • Maues C.P.R.
        • Casagrande M.V.S.
        • Almeida R.C.C.
        • Almeida M.A.O.
        • Carvalho F.A.R
        Three-dimensional surface models of the facial soft tissues acquired with a low-cost scanner.
        Int J Oral Maxillofac Surg. 2018; 47: 1219-1225
        • Berretti S.
        • Pala P.
        • del Bimbo A
        Increasing 3D resolution of Kinect faces.
        in: Paper presented at: Computer Vision - ECCV 2014 Workshops, Cham2015
        • Hamza-Lup F.G.
        • Farrar S.
        • Leon E
        Patient specific 3D surfaces for interactive medical planning and training.
        in: Proceedings of the 20th International Conference on 3D Web Technology, Heraklion, Crete, Greece2015
        • Hernandez M.
        • Choi J.
        • Medioni G
        Laser scan quality 3-D face modeling using a low-cost depth camera.
        in: Paper presented at: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO); 27-31 Aug. 2012. 2012
        • Ahn H.W.
        • Chang Y.J.
        • Kim K.A.
        • Joo S.H.
        • Park Y.G.
        • Park K.H
        Measurement of three-dimensional perioral soft tissue changes in dentoalveolar protrusion patients after orthodontic treatment using a structured light scanner.
        Angle Orthod. 2014; 84: 795-802
        • Andrade L.M.
        • Rodrigues da Silva A.M.B.
        • Magri L.V.
        • Rodrigues da Silva M.A.M
        Repeatability study of angular and linear measurements on facial morphology analysis by means of stereophotogrammetry.
        J Craniofac Surg. 2017; 28: 1107-1111
        • Da Silveira A.C.
        • Daw Jr., J.L.
        • Kusnoto B.
        • Evans C.
        • Cohen M
        Craniofacial applications of three-dimensional laser surface scanning.
        J Craniofac Surg. 2003; 14: 449-456
        • Da Silveira A.C.
        • Martinez O.
        • Da Silveira D.
        • Daw Jr., J.L.
        • Cohen M
        Three-dimensional technology for documentation and record keeping for patients with facial clefts.
        Clin Plast Surg. 2004; 31: 141-148
        • Dindaroglu F.
        • Kutlu P.
        • Duran G.S.
        • Gorgulu S.
        • Aslan E
        Accuracy and reliability of 3D stereophotogrammetry: a comparison to direct anthropometry and 2D photogrammetry.
        Angle Orthod. 2016; 86: 487-494
        • Düppe K.
        • Becker M.
        • Schonmeyr B
        Evaluation of facial anthropometry using three-dimensional photogrammetry and direct measuring techniques.
        J Craniofac Surg. 2018; 29: 1245-1251
        • Fourie Z.
        • Damstra J.
        • Gerrits P.O.
        • Ren Y
        Evaluation of anthropometric accuracy and reliability using different three-dimensional scanning systems.
        Forensic Sci Int. 2011; 207: 127-134
        • Germec-Cakan D.
        • Canter H.I.
        • Nur B.
        • Arun T
        Comparison of facial soft tissue measurements on three-dimensional images and models obtained with different methods.
        J Craniofac Surg. 2010; 21: 1393-1399
        • Jayaratne Y.S.N.
        • McGrath C.P.J.
        • Zwahlen R.A
        How accurate are the fusion of cone-beam CT and 3-D stereophotographic images.
        PLoS ONE. 2012; 7: e49585
        • Kau C.H.
        • Richmond S.
        • Zhurov A.I.
        • et al.
        Reliability of measuring facial morphology with a 3-dimensional laser scanning system.
        Am J Orthod Dentofacial Orthop. 2005; 128: 424-430
        • Knoops P.G.
        • Beaumont C.A.
        • Borghi A.
        • et al.
        Comparison of three-dimensional scanner systems for craniomaxillofacial imaging.
        J Plast Reconstr Aesthet Surg. 2017; 70: 441-449
        • Kovacs L.
        • Zimmermann A.
        • Brockmann G.
        • et al.
        Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner.
        IEEE Trans Med Imaging. 2006; 25: 742-754
        • Kovacs L.
        • Zimmermann A.
        • Brockmann G.
        • et al.
        Three-dimensional recording of the human face with a 3D laser scanner.
        J Plast Reconstr Aesthet Surg. 2006; 59: 1193-1202
        • Liu Y.
        • Kau C.H.
        • Talbert L.
        • Pan F
        Three-dimensional analysis of facial morphology.
        J Craniofac Surg. 2014; 25: 1890-1894
        • Lübbers H.T.
        • Medinger L.
        • Kruse A.
        • Gratz K.W.
        • Matthews F
        Precision and accuracy of the 3dMD photogrammetric system in craniomaxillofacial application.
        J Craniofac Surg. 2010; 21: 763-767
        • Ma L.
        • Xu T.
        • Lin J
        Validation of a three-dimensional facial scanning system based on structured light techniques.
        Comput Methods Programs Biomed. 2009; 94: 290-298
        • Modabber A.
        • Peters F.
        • Kniha K.
        • et al.
        Evaluation of the accuracy of a mobile and a stationary system for three-dimensional facial scanning.
        J Craniomaxillofac Surg. 2016; 44: 1719-1724
        • Naini F.B.
        • Akram S.
        • Kepinska J.
        • Garagiola U.
        • McDonald F.
        • Wertheim D
        Validation of a new three-dimensional imaging system using comparative craniofacial anthropometry.
        Maxillofac Plast Reconst Surg. 2017; 39: 23
        • Nord F.
        • Ferjencik R.
        • Seifert B.
        • et al.
        The 3dMD photogrammetric photo system in cranio-maxillofacial surgery: validation of interexaminer variations and perceptions.
        J Craniomaxillofac Surg. 2015; 43: 1798-1803
        • Patel A.
        • Islam S.M.
        • Murray K.
        • Goonewardene M.S
        Facial asymmetry assessment in adults using three-dimensional surface imaging.
        Progr Orthod. 2015; 16: 36
        • Sidequersky F.V.
        • Verze L.
        • Mapelli A.
        • Ramieri G.A.
        • Sforza C
        Quantification of facial movements by optical instruments: surface laser scanning and optoelectronic three-dimensional motion analyzer.
        J Craniofac Surg. 2014; 25: e65-e70
        • Taylor H.O.
        • Morrison C.S.
        • Linden O.
        • et al.
        Quantitative facial asymmetry: using three-dimensional photogrammetry to measure baseline facial surface symmetry.
        J Craniofac Surg. 2014; 25: 124-128
        • ten Harkel T.C.
        • Speksnijder C.M.
        • van der Heijden F.
        • Beurskens C.H.G.
        • Ingels K.J.A.O.
        • Maal T.J.J
        Depth accuracy of the RealSense F200: low-cost 4D facial imaging.
        Sci Rep. 2017; 7
        • Tzou C.H.
        • Artner N.M.
        • Pona I.
        • et al.
        Comparison of three-dimensional surface-imaging systems.
        J Plast Reconstr Aesthet Surg. 2014; 67: 489-497
        • van der Meer W.J.
        • Dijkstra P.U.
        • Visser A.
        • Vissink A.
        • Ren Y
        Reliability and validity of measurements of facial swelling with a stereophotogrammetry optical three-dimensional scanner.
        Br J Oral Maxillofac Surg. 2014; 52: 922-927
        • Verhulst A.
        • Hol M.
        • Vreeken R.
        • Becking A.
        • Ulrich D.
        • Maal T
        Three-dimensional imaging of the face: a comparison between three different imaging modalities.
        Aesthet Surg J. 2018; 38: 579-585
        • Verzé L.
        • Nasi A.
        • Quaranta F.
        • Vasino V.
        • Prini V.
        • Ramieri G
        Quantification of facial movements by surface laser scanning.
        J Craniofac Surg. 2011; 22: 60-65
        • Weinberg S.M.
        • Naidoo S.
        • Govier D.P.
        • Martin R.A.
        • Kane A.A.
        • Marazita M.L
        Anthropometric precision and accuracy of digital three-dimensional photogrammetry: comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry.
        J Craniofac Surg. 2006; 17: 477-483
        • Jodeh D.S.
        • Curtis H.
        • Cray J.J.
        • Ford J.
        • Decker S.
        • Rottgers S.A
        Anthropometric evaluation of periorbital region and facial projection using three-dimensional photogrammetry.
        J Craniofac Surg. 2018; 29: 2017-2020
        • Secher J.J.
        • Darvann T.A.
        • Pinholt E.M
        Accuracy and reproducibility of the DAVID SLS-2 scanner in three-dimensional facial imaging.
        J Craniomaxillofac Surg. 2017; 45: 1662-1670
        • Anasosalu P.K.
        • Thomas D.
        • Sugimoto A
        Compact and accurate 3-D face modeling using an RGB-D camera: let's open the door to 3-D video conference.
        in: Paper presented at: 2013 IEEE International Conference on Computer Vision Workshops; 2-8 Dec. 2013. 2013
        • Fang Q.
        • Kyrarini M.
        • Ristic-Durrant D.
        • Gräser A
        RGB-D camera based 3D human mouth detection and tracking towards robotic feeding assistance.
        in: Paper presented at: Proceedings of the 11th Pervasive Technologies Related to Assistive Environments Conference. 2018
        • Al-Khatib A.R
        Facial three dimensional surface imaging: an overview.
        Arch Orofac Sci. 2010; 5: 1-8
        • Hammond P.
        The use of 3D face shape modelling in dysmorphology.
        Arch Dis Child. 2007; 92: 1120-1126
        • Moss J.P.
        • Linney A.D.
        • Grindrod S.R.
        • Mosse C.A
        A laser scanning system for the measurement of facial surface morphology.
        Optics Lasers Eng. 1989; 10: 179-190
        • Hajeer M.Y.
        • Millett D.T.
        • Ayoub A.F.
        • Siebert J.P
        Applications of 3D imaging in orthodontics: part I.
        J Orthod. 2004; 31: 62-70
        • Heike C.L.
        • Upson K.
        • Stuhaug E.
        • Weinberg S.M
        3D digital stereophotogrammetry: a practical guide to facial image acquisition.
        Head Face Med. 2010; 6: 18
        • Al-Anezi T.
        • Khambay B.
        • Peng M.J.
        • O'Leary E.
        • Ju X.
        • Ayoub A
        A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).
        Int J Oral Maxillofac Surg. 2013; 42: 9-18