Advertisement
Review| Volume 69, ISSUE 2, e19-e26, February 2016

Download started.

Ok

Review of the cellular and biological principles of distraction osteogenesis: An in vivo bioreactor tissue engineering model

  • K. Dhaliwal
    Correspondence
    Corresponding author. St George's NHS Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK. Tel.: +44 020 8672 1255; fax: +44 020 7295 3495.
    Affiliations
    St George's NHS Trust, Tooting, London, SW17 0QT, UK
    Search for articles by this author
  • Author Footnotes
    1 Tel.: +61 2 62016620; fax: +61 2 62535330.
    R. Kunchur
    Footnotes
    1 Tel.: +61 2 62016620; fax: +61 2 62535330.
    Affiliations
    Plastic & Reconstructive Surgery Department, Australian National University, Canberra ACT 0200, Australia
    Search for articles by this author
  • Author Footnotes
    1 Tel.: +61 2 62016620; fax: +61 2 62535330.
    R. Farhadieh
    Footnotes
    1 Tel.: +61 2 62016620; fax: +61 2 62535330.
    Affiliations
    Plastic & Reconstructive Surgery Department, Australian National University, Canberra ACT 0200, Australia
    Search for articles by this author
  • Author Footnotes
    1 Tel.: +61 2 62016620; fax: +61 2 62535330.
Published:November 25, 2015DOI:https://doi.org/10.1016/j.bjps.2015.11.003

      Summary

      Distraction osteogenesis (DO) is a widely used technique in plastic and orthopaedic surgery. During the process, mechanical force is applied to fractured bone to enhance the regenerative processes and induce new bone formation.
      Although there is an abundance of literature on the clinical process of DO, there is a distinct lack of focus on the underlying biological principles governing this process. DO follows the basic premises of tissue engineering. The mechanical stress stimulates mesenchymal stem cell differentiation down an osteoblastic lineage on a matrix background. The aim of this review is to give an overview of the current knowledge of the molecular mechanism governing this process.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Plastic, Reconstructive & Aesthetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sailhan F.
        Bone lengthening (distraction osteogenesis): a literature review.
        Osteoporos Int. 2011; 2: 2011-2015
        • Karp N.S.
        • McCarthy J.G.
        • Schreiber J.S.
        • Sissons H.A.
        • Thorne C.H.
        Membranous bone lengthening: a serial histological study.
        Ann Plast Surg. 1992; 29: 2-7
        • McCarthy J.G.
        • Katzen J.T.
        • Hopper R.
        • Grayson B.H.
        The first decade of mandibular distraction: lessons we have learned.
        Plast Reconstr Surg. 2002; 110: 1704-1713
        • Rachimel A.
        • Levy M.
        Lengthening of the mandible by distraction osteogenesis: report of cases.
        J Oral Maxillofac Surg. 1995; 53: 838-846
        • Matev Ivan B.
        Thumb reconstruction through metacarpal bone lengthening.
        J Hand Surg Am. 1980; 5: 482-487
        • Aronson J.
        Experimental and clinical experience with distraction osteogenesis.
        Cleft Palate Craniofac J. 1994; 31: 481-482
        • Guo X.
        • Zhao Y.
        • Chang H.
        • et al.
        Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells.
        Circulation. 2006; 113: 2229-2237
        • Sugimoto H.
        • Mundel T.M.
        • Sund M.
        • et al.
        Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease.
        Proc Natl Acad Sci U S A. 2006; 103: 7321-7326
        • Cohen D.M.
        • Chen C.S.
        Mechanical control of stem cell differentiation.
        (StemBook [Internet]) Harvard Stem Cell Institute, Cambridge (MA)2008
        • Jacobsen K.A.
        • Al-Aql Z.S.
        • Wan C.
        • et al.
        Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling.
        J Bone Miner Res. 2008; 23: 596-609
        • Dimitriou R.
        • Tsiridis E.
        • Giannoudis P.V.
        Current concepts of molecular aspects of bone healing.
        Injury. 2005; 36: 1392-1404
        • Farhadieh R.D.
        • Dickinson R.
        • Yu Y.
        • et al.
        The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible.
        J Craniofac Surg. 1999; 10: 80-86
        • Cho T.J.
        • Kim J.A.
        • Chung C.Y.
        • et al.
        Expression and role of interleukin-6 in distraction osteogenesis.
        Calcif Tissue Int. 2007; 80: 192-200
        • Spencer E.M.
        • Liu C.C.
        • Si E.C.
        • et al.
        In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in rats.
        Bone. 1991; 12: 21-26
        • Liu Z.
        • Luyten F.P.
        • Lammens J.
        • et al.
        Molecular signaling in bone fracture healing and distraction osteogenesis.
        Histol Histopathol. 1999; 14: 587-595
        • Kon T.
        • Cho T.J.
        • Aizawa T.
        • et al.
        Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing.
        J Bone Miner Res. 2001; 16: 1004-1014
        • Bouletreau P.J.
        • Warren S.M.
        • Longaker M.T.
        The molecular biology of distraction osteogenesis.
        J Craniomaxillofac Surg. 2002 Feb; 30: 1-11
        • Mehrara B.J.
        • Rowe N.M.
        • Steinbrech D.S.
        • et al.
        Rat mandibular distraction osteogenesis: II. Molecular analysis of transforming growth factor beta-1 and osteocalcin gene expression.
        Plast Reconstr Surg. 1999; 103: 536-547
        • Onishi T.
        • Ishidou Y.
        • Nagamine T.
        • et al.
        Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats.
        Bone. 1998; 22: 605-612
        • Sato M.
        • Ochi T.
        • Nakase T.
        • et al.
        Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis.
        J Bone Miner Res. 1999; 14: 1084-1095
        • Weiss S.
        • Baumgart R.
        • Jochum M.
        • et al.
        Systemic regulation of distraction osteogenesis: a cascade of biochemical factors.
        J Bone Miner Res. 2002; 17: 1280-1289
        • Yonezawa H.
        • Harada K.
        • Ikebe T.
        • et al.
        Effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on bone consolidation on distraction osteogenesis: a preliminary study in rabbit mandibles.
        J Craniomaxillofac Surg. 2006; 34: 270-276
        • Alam N.
        • St-Arnaud R.
        • Lauzier D.
        • et al.
        Are endogenous BMPs necessary for bone healing during distraction osteogenesis?.
        Clin Orthop Relat Res. 2009; 467: 3190-3198
        • Wang Z.G.
        • Hu J.
        • Zou S.J.
        • et al.
        Recombinant human BMP-2 accelerates bone formation of mandibular distraction osteogenesis in rabbits.
        West China J Stomatol. 2004; 22: 186-188
        • Matsubara H.
        • Hogan D.E.
        • Morgan E.F.
        • et al.
        Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis.
        Bone. 2012; 51: 168-180
        • Ferrara N.
        Vascular endothelial growth factor: molecular and biological aspects.
        Curr Top Microbiol Immunol. 1999; 237: 1-30
        • Bajada S.
        • Mazakova I.
        • Richardson J.B.
        • et al.
        Updates on stem cells and their applications in regenerative medicine.
        J Tissue Eng Regen Med. 2008; 2: 169-183
        • Lee D.A.
        • Knight M.M.
        • Campbell J.J.
        • et al.
        Stem cell mechanobiology.
        J Cell Biochem. 2011; 112: 1-9
        • Kuhn N.Z.
        • Tuan R.S.
        Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis.
        J Cell Physiol. 2010; 222: 268-277
        • Ohlstein B.
        • Kai T.
        • Decotto E.
        • et al.
        The stem cell niche: theme and variations.
        Curr Opin Cell Biol. 2004; 16: 693-699
        • Kelly D.J.
        • Jacobs C.R.
        The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells.
        Birth Defects Res C Embryo Today. 2010; 90: 75-85
        • Morgan E.F.
        • Longaker M.T.
        • Carter D.R.
        Relationships between tissue dilatation and differentiation in distraction osteogenesis.
        Matrix Biol. 2006; 25: 94-103
        • D'Angelo F.
        • Tiribuzi R.
        • Armentano I.
        • Kenny J.M.
        • et al.
        Mechanotransduction: tuning stem cells fate.
        J Funct Biomater. 2011; 2: 67-87
        • Carter D.R.
        • Beaupré G.S.
        • Giori N.J.
        • et al.
        Mechanobiology of skeletal regeneration.
        Clin Orthop Relat Res. 1998; 355: S41-S55
        • Pavalko F.M.
        • Norvell S.M.
        • Burr D.B.
        • et al.
        A model for mechanotransduction in bone cells: the load-bearing mechanosomes.
        J Cell Biochem. 2003; 88: 104-112
        • Schwartz M.A.
        Integrins and extracellular matrix in mechanotransduction.
        Cold Spring Harb Perspect Biol. 2010; 2: a005066
        • Guilak F.
        • Cohen D.M.
        • Estes B.T.
        • et al.
        Control of stem cell fate by physical interactions with the extracellular matrix.
        Cell Stem Cell. 2009; 5: 17-26
        • Schwartz M.A.
        • Schaller M.D.
        • Ginsberg M.H.
        Integrins: emerging paradigms of signal transduction.
        Annu Rev Cell Dev Biol. 1995; 11: 549
        • Campbell I.D.
        • Humphries M.J.
        Integrin structure, activation, and interactions.
        Cold Spring Harb Perspect Biol. 2011 Mar 1; 3
        • Chen C.S.
        • Ingber D.E.
        Tensegrity and mechanoregulation: from skeleton to cytoskeleton.
        Osteoarthr Cartil. 1999; 7: 81-94
        • Igber D.E.
        Tensegrity-based mechanosensing from macro to micro.
        Prog Biophys Mol Biol. 2008; 97: 163-179
        • Harburger D.S.
        • Calderwood D.A.
        Integrin signalling at a glance.
        J Cell Sci. 2009; 122: 159-163
        • Miyauchi A.
        • Gotoh M.
        • Kamioka H.
        • et al.
        AlphaVbeta3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes.
        J Bone Miner Metab. 2006; 24: 498-504
        • Tong L.
        • Buchman S.R.
        • Ignelzi Jr., M.A.
        • et al.
        Focal adhesion kinase expression during mandibular distraction osteogenesis: evidence for mechanotransduction.
        Plast Reconstr Surg. 2003; 111: 211-222
        • Gjorevski N.
        • Nelson C.M.
        Bidirectional extracellular matrix signaling during tissue morphogenesis.
        Cytokine Growth Factor Rev. 2009; 20: 459-465
        • Wang X.
        • Liao S.
        • Nelson E.R.
        • et al.
        The cytoskeletal regulatory scaffold protein GIT2 modulates mesenchymal stem cell differentiation and osteoblastogenesis.
        Biochem Biophys Res Commun. 2012; 425: 407-412
        • Rhee S.T.
        • El-Bassiony L.
        • Buchman S.R.
        Extracellular signal-related kinase and bone morphogenetic protein expression during distraction osteogenesis of the mandible: in vivo evidence of a mechanotransduction mechanism for differentiation and osteogenesis by mesenchymal precursor cells.
        Plast Reconstr Surg. 2006; 117: 2243-2249
        • Varghese S.
        • Engler A.
        Musculoskeletal cell mechanics.
        in: Winklestein B. Orthopaedic biomechanics. 1st ed. CRC Press, 2012: 301-317
        • Burger E.
        • Klein-Nulend J.
        Responses of bone cells to biomechanical forces in vitro.
        Adv Dent Res. 1999; 113: 93-98
        • Klein-Nudland J.
        • Bakker A.
        • Bacabac R.
        • Vatsa A.
        • Weinbaum S.
        Mechanosensation and transduction in osteocytes.
        Bone. 2013; 54: 182-190
        • Santos A.
        • Bakker A.D.
        • Klein-Nulend J.
        The role of osteocytes in bone mechanotransduction.
        Osteoporos Int. 2009; 20: 1027-1031
        • Huang C.
        • Ogawa R.
        Mechanotransduction in bone repair and regeneration.
        FASEB J. 2010; 24: 3625-3632
        • Sheehy S.
        • Parker K.
        The role of mechanical forces in guiding tissue differentiation.
        in: Tissue engineering in regenerative medicine. 1st ed. Humana Press, 2011: 77-97
        • Tan S.D.
        • de Vries T.J.
        • Kuijpers-Jagtman A.M.
        • et al.
        Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption.
        Bone. 2007; 41: 745-751
        • Vezeridis P.S.
        • Semeins C.M.
        • Chen Q.
        • et al.
        Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation.
        Biochem Biophys Res Commun. 2006; 348: 1082-1088
        • Vatsa A.
        • Breuls R.G.
        • Semeins C.M.
        • et al.
        Osteocyte morphology in fibula and calvaria –- is there a role for mechanosensing?.
        Bone. 2008; 43: 452-458
        • Weinbaum S.
        • Cowin S.C.
        • Zeng Y.
        A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
        J Biomech. 1994; 27: 339-360
        • Lanyon L.E.
        Osteocytes, strain detection, bone modelling and remodelling.
        Calcif Tissue Int. 1993; 53 (S102–6. S106–7)
        • Bonewald L.
        Osteocytes as dynamic multifunctional cells.
        Ann N Y Acad Sci. 2007; 1116: 281-290
        • Han Y.
        • Cowin S.C.
        • Schaffler M.B.
        • Weinbaum S.
        Mechanotransduction and strain amplification in osteocyte cell processes.
        Proc Natl Acad Sci U S A. 2004; 101: 16689-16694
        • Burra S.
        • Nicolella D.P.
        • Francis W.L.
        • et al.
        Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels.
        Proc Natl Acad Sci U S A. 2010; 107: 13648-13653
        • Cherian P.P.
        • Siller-Jackson A.J.
        • Gu S.
        • et al.
        Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin.
        Mol Biol Cell. 2005; 16: 3100-3106
        • Friedl G.
        • Schmidt H.
        • Rehak I.
        • et al.
        Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro.
        Osteoarthr Cartil. 2007; 15: 1293-1300
        • Stein G.S.
        • Lian J.B.
        • Stein J.L.
        • et al.
        Transcriptional control of osteoblast growth and differentiation.
        Physiol Rev. 1996; 76: 593-629
        • Lewinson D.
        • Rachmiel A.
        • Rihani-Bisharat S.
        • et al.
        Stimulation of Fos- and Jun-related genes during distraction osteogenesis.
        J Histochem Cytochem. 2003; 51: 1161-1168
        • Sumanasinghe R.D.
        • Bernacki S.H.
        • Loboa E.G.
        Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression.
        Tissue Eng. 2006; 12: 3459-3465
        • Sumanasinghe R.D.
        • Pfeiler T.W.
        • Monteiro-Riviere N.A.
        • et al.
        Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain.
        J Cell Physiol. 2009; 219: 77-83
        • Santos A.
        • Bakker A.D.
        • Willems H.M.
        • et al.
        Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes.
        Calcif Tissue Int. 2011; 89: 318-326
        • Qi M.C.
        • Hu J.
        • Zou S.J.
        • et al.
        Mechanical strain induces osteogenic differentiation: cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells.
        Int J Oral Maxillofac Surg. 2008; 37: 453-458
        • Kanno T.
        • Takahashi T.
        • Ariyoshi W.
        • et al.
        Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis.
        J Oral Maxillofac Surg. 2005; 63: 499-504
        • Park J.S.
        • Chu J.S.
        • Tsou A.D.
        • et al.
        The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-â.
        Biomaterials. 2011; 32: 3921-3930
        • Park J.S.
        • Chu J.S.
        • Cheng C.
        • et al.
        Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells.
        Biotechnol Bioeng. 2004; 88: 359-368
        • Koike T.
        • Takaoka K.
        • Rinsho Nihon
        Stimulation of bone formation.
        Jpn J Clin Med. 2005; 63: 426-430
        • Amir L.R.
        • Everts V.
        • Bronckers A.L.
        Bone regeneration during distraction osteogenesis.
        Odontology. 2009; 97: 63-75
        • Burke D.P.
        • Kelly D.J.
        Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.
        PLoS One. 2012; 7: e40737
        • Birmingham E.
        • Niebur G.L.
        • McHugh P.E.
        • et al.
        Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche.
        Eur Cell Mater. 2012; 12: 13-27
        • Korossis S.A.
        • Bolland F.
        • Kearney J.N.
        • Fisher J.
        • Ingham E.
        Bioreactors in tissue engineering.
        Top Tissue Eng. 2005; 2: 1-23