Review| Volume 69, ISSUE 2, P170-179, February 2016

Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature

Published:October 30, 2015DOI:


      Stromal Vascular Fraction (SVF) is a heterogeneous collection of cells contained within adipose tissue that is traditionally isolated using enzymes such as collagenase. With the removal of adipose cells, connective tissue and blood from lipoaspirate, comes the SVF, a mix including mesenchymal stem cells, endothelial precursor cells, T regulatory cells, macrophages, smooth muscle cells, pericytes and preadipocytes. In part 1 of our 2-part series, we review the literature with regards to the intensifying interest that has shifted toward this mixture of cells, particularly due to its component synergy and translational potential. Trials assessing the regenerative potential of cultured Adipose Derived Stem Cells (ADSCs) and SVF demonstrate that SVF is comparably effective in treating conditions ranging from radiation injuries, burn wounds and diabetes, amongst others. Aside from their use in chronic conditions, SVF enrichment of fat grafts has proven a major advance in maintaining fat graft volume and viability. Many SVF studies are currently in preclinical phases or are moving to human trials. Overall, regenerative cell therapy based on SVF is at an early investigative stage but its potential for clinical application is enormous.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Plastic, Reconstructive & Aesthetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Zuk P.A.
        • Zhu M.
        • Mizuno H.
        • et al.
        Multilineage cells from human adipose tissue: implications for cell-based therapies.
        Tissue Eng. 2001; 7: 211-228
        • Riordan N.H.
        • Ichim T.E.
        • Min W.P.
        • et al.
        Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis.
        J Transl Med. 2009; 7: 29
        • Yoshimura K.
        • Sato K.
        • Aoi N.
        • Kurita M.
        • Hirohi T.
        • Harii K.
        Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells.
        Aesthetic Plast Surg. 2008; 32 ([discussion 56-7]): 48-55
        • Li J.
        • Gao J.
        • Cha P.
        • et al.
        Supplementing fat grafts with adipose stromal cells for cosmetic facial contouring..
        Dermatol Surg. 2013; 39: 449-456
        • van Dijk A.
        • Naaijkens B.A.
        • Jurgens W.J.
        • et al.
        Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application.
        Stem Cell Res. 2011; 7: 219-229
        • Atalay S.
        • Coruh A.
        • Deniz K.
        Stromal vascular fraction improves deep partial thickness burn wound healing.
        Burns. 2014; 40: 1375-1383
        • Rajashekhar G.
        • Ramadan A.
        • Abburi C.
        • et al.
        Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy.
        PloS One. 2014; 9: e84671
        • Chung M.T.
        • Zimmermann A.S.
        • Paik K.J.
        • et al.
        Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine.
        Stem cells Transl Med. 2013; 2: 808-817
        • Premaratne G.U.
        • Ma L.P.
        • Fujita M.
        • Lin X.
        • Bollano E.
        • Fu M.
        Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role.
        J Cardiothorac Surg. 2011; 6: 43
        • You H.J.
        • Han S.K.
        Cell therapy for wound healing.
        J Korean Med Sci. 2014; 29: 311-319
        • Jarajapu Y.P.
        • Grant M.B.
        The promise of cell-based therapies for diabetic complications: challenges and solutions.
        Circ Res. 2010; 106: 854-869
        • Tocco I.
        • Widgerow A.D.
        • Lalezari S.
        • Banyard D.
        • Shaterian A.
        • Evans G.R.
        Lipotransfer: the potential from bench to bedside.
        Ann Plast Surg. 2014; 72: 599-609
        • Kakagia D.
        • Pallua N.
        Autologous fat grafting: in search of the optimal technique.
        Surg Innov. 2014; 21: 327-336
        • Kolle S.F.
        • Fischer-Nielsen A.
        • Mathiasen A.B.
        • et al.
        Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial.
        Lancet. 2013; 382: 1113-1120
        • Eto H.
        • Ishimine H.
        • Kinoshita K.
        • et al.
        Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency.
        Stem Cells Dev. 2013; 22: 985-997
        • Karacaoglu E.
        • Kizilkaya E.
        • Cermik H.
        • Zienowicz R.
        The role of recipient sites in fat-graft survival: experimental study.
        Ann Plast Surg. 2005; 55 ([discussion 68]): 63-68
        • Matsumoto D.
        • Sato K.
        • Gonda K.
        • et al.
        Cell-Assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection.
        Tissue Eng. 2006; 12: 3375-3389
        • Tanikawa D.Y.
        • Aguena M.
        • Bueno D.F.
        • Passos-Bueno M.R.
        • Alonso N.
        Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia.
        Plast Reconstr Surg. 2013; 132: 141-152
        • Peltoniemi H.H.
        • Salmi A.
        • Miettinen S.
        • et al.
        Stem cell enrichment does not warrant a higher graft survival in lipofilling of the breast: a prospective comparative study.
        J Plast Reconstr Aesthet Surg. 2013; 66: 1494-1503
        • Kakudo N.
        • Tanaka Y.
        • Morimoto N.
        • et al.
        Adipose-derived regenerative cell (ADRC)-enriched fat grafting: optimal cell concentration and effects on grafted fat characteristics.
        J Transl Med. 2013; 11: 254
        • Kamakura T.
        • Ito K.
        Autologous cell-enriched fat grafting for breast augmentation.
        Aesthetic Plast Surg. 2011; 35: 1022-1030
        • Chatterjee S.
        • Laliberte M.
        • Blelloch S.
        • et al.
        Adipose-derived stromal vascular fraction differentially expands breast progenitors in tissue adjacent to tumors compared to healthy breast tissue.
        Plast Reconstr Surg. 2015; 136: 414e-425e
        • Mandel K.
        • Yang Y.
        • Schambach A.
        • Glage S.
        • Otte A.
        • Hass R.
        Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.
        Stem Cells Dev. 2013; 22: 3114-3127
        • Rowan B.G.
        • Gimble J.M.
        • Sheng M.
        • et al.
        Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.
        PloS One. 2014; 9: e89595
        • Zimmerlin L.
        • Donnenberg A.D.
        • Rubin J.P.
        • Basse P.
        • Landreneau R.J.
        • Donnenberg V.S.
        Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates.
        Tissue Eng Part A. 2011; 17: 93-106
        • Charles-de-Sa L.
        • Gontijo-de-Amorim N.F.
        • Maeda Takiya C.
        • et al.
        Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells.
        Plast Reconstr Surg. 2015; 135: 999-1009
        • Bourin P.
        • Bunnell B.A.
        • Casteilla L.
        • et al.
        Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).
        Cytotherapy. 2013; 15: 641-648
        • Banyard D.A.
        • Salibian A.A.
        • Widgerow A.D.
        • Evans G.R.
        Implications for human adipose-derived stem cells in plastic surgery.
        J Cell Mol Med. 2015; 19: 21-30
        Human cells, tissues, and cellular and tissue-based products (HCT/Ps) from adipose tissue: regulatory considerations; draft guidance.
        2015 ([accessed 04.08.15]; Available from:)
        • Gir P.
        • Oni G.
        • Brown S.A.
        • Mojallal A.
        • Rohrich R.J.
        Human adipose stem cells: current clinical applications.
        Plast Reconstr Surg. 2012; 129: 1277-1290
        • Liras A.
        Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects.
        J Transl Med. 2010; 8: 131
        • Tonnard P.
        • Verpaele A.
        • Peeters G.
        • Hamdi M.
        • Cornelissen M.
        • Declercq H.
        Nanofat grafting: basic research and clinical applications.
        Plast Reconstr Surg. 2013; 132: 1017-1026
        • Stuzin J.M.
        Discussion: Nanofat grafting: basic research and clinical applications.
        Plast Reconstr Surg. 2013; 132: 1027-1028
        • di Summa P.G.
        • Kingham P.J.
        • Raffoul W.
        • Wiberg M.
        • Terenghi G.
        • Kalbermatten D.F.
        Adipose-derived stem cells enhance peripheral nerve regeneration.
        J Plast Reconstr Aesthet Surg. 2010; 63: 1544-1552
        • Pereira Lopes F.R.
        • Camargo de Moura Campos L.
        • Dias Correa Jr., J.
        • et al.
        Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice.
        Exp Neurol. 2006; 198: 457-468
        • Mohammadi R.
        • Sanaei N.
        • Ahsan S.
        • Rostami H.
        • Abbasipour-Dalivand S.
        • Amini K.
        Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats.
        Int J Surg. 2014; 12: 33-40
        • Papalia I.
        • Raimondo S.
        • Ronchi G.
        • Magaudda L.
        • Giacobini-Robecchi M.G.
        • Geuna S.
        Repairing nerve gaps by vein conduits filled with lipoaspirate-derived entire adipose tissue hinders nerve regeneration.
        Ann Anat. 2013; 195: 225-230
        • Constantinescu C.S.
        • Farooqi N.
        • O'Brien K.
        • Gran B.
        Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).
        Br J Pharmacol. 2011; 164: 1079-1106
        • Semon J.A.
        • Zhang X.
        • Pandey A.C.
        • et al.
        Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis.
        Stem Cells Transl Med. 2013; 2: 789-796
        • Ricco J.B.
        • Thanh Phong L.
        • Schneider F.
        • et al.
        The diabetic foot: a review.
        J Cardiovasc Surg (Torino). 2013; 54: 755-762
        • Han S.K.
        • Kim H.R.
        • Kim W.K.
        The treatment of diabetic foot ulcers with uncultured, processed lipoaspirate cells: a pilot study.
        Wound Repair Regen. 2010; 18: 342-348
        • Lv S.S.
        • Liu G.
        • Wang J.P.
        • et al.
        Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration.
        Int Immunopharmacol. 2013; 17: 275-282
        • Perbeck L.
        • Celebioglu F.
        • Svensson L.
        • Danielsson R.
        Lymph circulation in the breast after radiotherapy and breast conservation.
        Lymphology. 2006; 39: 33-40
        • Rigotti G.
        • Marchi A.
        • Galie M.
        • et al.
        Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells.
        Plast Reconstr Surg. 2007; 119 ([discussion 1423-4]): 1409-1422
        • Gimble J.M.
        • Bunnell B.A.
        • Chiu E.S.
        • Guilak F.
        Concise review: Adipose-derived stromal vascular fraction cells and stem cells: let's not get lost in translation.
        Stem Cells. 2011; 29: 749-754
        • Laass M.W.
        • Roggenbuck D.
        • Conrad K.
        Diagnosis and classification of Crohn's disease.
        Autoimmun Rev. 2014; 13: 467-471
        • Sartor R.B.
        Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis.
        Nat Clin Pract Gastroenterol Hepatol. 2006; 3: 390-407
        • Dalal J.
        • Gandy K.
        • Domen J.
        Role of mesenchymal stem cell therapy in Crohn's disease.
        Pediatr Res. 2012; 71: 445-451
        • Thesleff T.
        • Lehtimaki K.
        • Niskakangas T.
        • et al.
        Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction.
        Neurosurgery. 2011; 68: 1535-1540
        • Sandor G.K.
        • Tuovinen V.J.
        • Wolff J.
        • et al.
        Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration.
        J Oral Maxillofac Surg. 2013; 71: 938-950
        • Wilson S.M.
        • Goldwasser M.S.
        • Clark S.G.
        • et al.
        Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine.
        J Oral Maxillofac Surg. 2012; 70: e193-203
        • Mehrkens A.
        • Saxer F.
        • Guven S.
        • et al.
        Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2.
        Eur Cell Mater. 2012; 24: 308-319
        • Jurgens W.J.
        • Kroeze R.J.
        • Zandieh-Doulabi B.
        • et al.
        One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study.
        Biores Open Access. 2013; 2: 315-325
        • Arana M.
        • Gavira J.J.
        • Pena E.
        • et al.
        Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction.
        Biomaterials. 2014; 35: 143-151
        • Khalpey Z.
        • Janardhanan R.
        • Konhilas J.
        • Hemphill C.
        First in man: adipose-derived stromal vascular fraction cells may promote restorative cardiac function.
        Am J Med. 2014; 127: e11-12
        • Gimble J.M.
        • Katz A.J.
        • Bunnell B.A.
        Adipose-derived stem cells for regenerative medicine.
        Circ Res. 2007; 100: 1249-1260
        • Yoshimura K.
        • Shigeura T.
        • Matsumoto D.
        • et al.
        Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates.
        J Cell Physiol. 2006; 208: 64-76
        • Yoshimura K.
        Cell-assisted lipotransfer for breast augmentation: grafting of progenitor-enriched fat tissue.
        in: Shiffman M.A. Autologous fat transfer. Springer-Verlag, Berlin Heidelberg2010: 261-271
        • ClinicalTrialsgov search of stromal vascular fraction.
        2015 ([cited 2014 October 6, 2014]; Available from:)