Advertisement

Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action

Published:October 23, 2015DOI:https://doi.org/10.1016/j.bjps.2015.10.014

      Summary

      Adipose tissue is a rich source of cells with emerging promise for tissue engineering and regenerative medicine. The stromal vascular fraction (SVF), in particular, is an eclectic composite of cells with progenitor activity that includes preadipocytes, mesenchymal stem cells, pericytes, endothelial cells, and macrophages. SVF has enormous potential for therapeutic application and is being investigated for multiple clinical indications including lipotransfer, diabetes-related complications, nerve regeneration, burn wounds and numerous others. In Part 2 of our review, we explore the basic science behind the regenerative success of the SVF and discuss significant mechanisms that are at play. The existing literature suggests that angiogenesis, immunomodulation, differentiation, and extracellular matrix secretion are the main avenues through which regeneration and healing is achieved by the stromal vascular fraction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Plastic, Reconstructive & Aesthetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zuk P.A.
        • Zhu M.
        • Mizuno H.
        • et al.
        Multilineage cells from human adipose tissue: implications for cell-based therapies.
        Tissue Eng. 2001; 7: 211-229
        • Bourin P.
        • Bunnell B.A.
        • Casteilla L.
        • et al.
        Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).
        Cytotherapy. 2013; 15: 641-648
        • Gentile P.
        • Orlandi A.
        • Scioli M.G.
        • Di Pasquali C.
        • Bocchini I.
        • Cervelli V.
        Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery.
        Stem Cells Transl Med. 2012; 1: 230-236
        • van Dijk A.
        • Naaijkens B.A.
        • Jurgens W.J.
        • et al.
        Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application.
        Stem Cell Res. 2011; 7: 219-229
        • Jurgens W.J.
        • Kroeze R.J.
        • Zandieh-Doulabi B.
        • et al.
        One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study.
        Biores Open Access. 2013; 2: 315-325
        • Semon J.A.
        • Zhang X.
        • Pandey A.C.
        • et al.
        Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis.
        Stem Cells Transl Med. 2013; 2: 789-796
        • Rajashekhar G.
        • Ramadan A.
        • Abburi C.
        • et al.
        Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy.
        PLoS One. 2014; 9: e84671
        • Rigotti G.
        • Marchi A.
        • Galie M.
        • et al.
        Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells.
        Plast Reconstr Surg. 2007; 119 (discussion 1423-4): 1409-1422
        • Mohammadi R.
        • Sanaei N.
        • Ahsan S.
        • Rostami H.
        • Abbasipour-Dalivand S.
        • Amini K.
        Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats.
        Int J Surg. 2014; 12: 33-40
        • Astori G.
        • Vignati F.
        • Bardelli S.
        • et al.
        “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells.
        J Transl Med. 2007; 5: 55
        • Banyard D.A.
        • Salibian A.A.
        • Widgerow A.D.
        • Evans G.R.
        Implications for human adipose-derived stem cells in plastic surgery.
        J Cell Mol Med. 2015; 19: 21-30
        • Eto H.
        • Ishimine H.
        • Kinoshita K.
        • et al.
        Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency.
        Stem Cells Dev. 2013; 22: 985-997
        • Watson J.E.
        • Patel N.A.
        • Carter G.
        • et al.
        Comparison of markers and functional attributes of human adipose-derived stem cells and dedifferentiated adipocyte cells from subcutaneous fat of an obese diabetic donor.
        Adv Wound Care. 2014; 3: 219-228
        • Zimmerlin L.
        • Donnenberg V.S.
        • Rubin J.P.
        • Donnenberg A.D.
        Mesenchymal markers on human adipose stem/progenitor cells.
        Cytom A. 2013; 83: 134-140
        • Sumi M.
        • Sata M.
        • Toya N.
        • Yanaga K.
        • Ohki T.
        • Nagai R.
        Transplantation of adipose stromal cells, but not mature adipocytes, augments ischemia-induced angiogenesis.
        Life Sci. 2007; 80: 559-565
        • Zeyda M.
        • Farmer D.
        • Todoric J.
        • et al.
        Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production.
        Int J Obes (Lond). 2007; 31: 1420-1428
        • Tiemessen M.M.
        • Jagger A.L.
        • Evans H.G.
        • van Herwijnen M.J.
        • John S.
        • Taams L.S.
        CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages.
        Proc Natl Acad Sci U S A. 2007; 104: 19446-19451
        • Corselli M.
        • Crisan M.
        • Murray I.R.
        • et al.
        Identification of perivascular mesenchymal stromal/stem cells by flow cytometry.
        Cytom A. 2013; 83: 714-720
        • Choi J.S.
        • Kim B.S.
        • Kim J.Y.
        • et al.
        Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering.
        J Biomed Mater Res A. 2011; 97: 292-299
        • Eckes B.
        • Nischt R.
        • Krieg T.
        Cell-matrix interactions in dermal repair and scarring.
        Fibrogenes Tissue Repair. 2010; 3: 4
        • Traktuev D.O.
        • Prater D.N.
        • Merfeld-Clauss S.
        • et al.
        Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells.
        Circ Res. 2009; 104: 1410-1420
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
        • Sidney L.E.
        • Branch M.J.
        • Dunphy S.E.
        • Dua H.S.
        • Hopkinson A.
        Concise review: evidence for CD34 as a common marker for diverse progenitors.
        Stem Cells. 2014; 32: 1380-1389
        • Corselli M.
        • Crisan M.
        • Murray I.
        • et al.
        Identification of perivascular mesenchymal stromal/stem cells by flow cytometry.
        Cytom Part A. 2013; 83A: 714-720
        • Hager G.
        • Holnthoner W.
        • Wolbank S.
        • et al.
        Three specific antigens to isolate endothelial progenitor cells from human liposuction material.
        Cytotherapy. 2013; 15: 1426-1435
        • Navarro A.
        • Marín S.
        • Riol N.
        • Carbonell-Uberos F.
        • Miñana M.
        Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties.
        Stem Cell Res Ther. 2014; 5: 1-14
        • Blaber S.P.
        • Webster R.A.
        • Hill C.J.
        • et al.
        Analysis of in vitro secretion profiles from adipose-derived cell populations.
        J Transl Med. 2012; 10: 172
        • Chazenbalk G.
        • Bertolotto C.
        • Heneidi S.
        • et al.
        Novel pathway of adipogenesis through cross-talk between adipose tissue macrophages, adipose stem cells and adipocytes: evidence of cell plasticity.
        PLoS One. 2011; 6: e17834
        • Cianfarani F.
        • Toietta G.
        • Di Rocco G.
        • Cesareo E.
        • Zambruno G.
        • Odorisio T.
        Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing.
        Wound Repair Regen. 2013; 21: 545-553
        • Yoshimura K.
        • Sato K.
        • Aoi N.
        • Kurita M.
        • Hirohi T.
        • Harii K.
        Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells.
        Aesthetic Plast Surg. 2008; 32 (discussion 56-7): 48-55
        • Li J.
        • Gao J.
        • Cha P.
        • et al.
        Supplementing fat grafts with adipose stromal cells for cosmetic facial contouring.
        Dermatol Surg. 2013; 39: 449-456
        • Atalay S.
        • Coruh A.
        • Deniz K.
        Stromal vascular fraction improves deep partial thickness burn wound healing.
        Burns. 2014 Nov; 40: 1375-1383
        • Chung M.T.
        • Paik K.J.
        • Atashroo D.A.
        • et al.
        Studies in fat grafting: part I. Effects of injection technique on in vitro fat viability and in vivo volume retention.
        Plast Reconstr Surg. 2014 Jul; 134: 29-38
        • Premaratne G.U.
        • Ma L.P.
        • Fujita M.
        • Lin X.
        • Bollano E.
        • Fu M.
        Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role.
        J Cardiothorac Surg. 2011; 6: 43
        • Koh Y.J.
        • Koh B.I.
        • Kim H.
        • Koh B.I.
        • Kim H.
        • et al.
        Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells.
        Arterioscler Thromb Vasc Biol. 2011; 31: 1141-1150
        • Rehman J.
        • Traktuev D.
        • Li J.
        • et al.
        Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells.
        Circulation. 2004; 109: 1292-1298
        • Kolle S.F.
        • Fischer-Nielsen A.
        • Mathiasen A.B.
        • et al.
        Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial.
        Lancet. 2013; 382: 1113-1120
        • Armulik A.
        • Abramsson A.
        • Betsholtz C.
        Endothelial/pericyte interactions.
        Circ Res. 2005; 97: 512-523
        • Kwon H.M.
        • Hur S.M.
        • Park K.Y.
        • et al.
        Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis.
        Vasc Pharmacol. 2014 Oct; 63: 19-28
        • Zhu M.
        • Dong Z.
        • Gao J.
        • et al.
        Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells.
        Cell Transpl. 2015; 24: 49-62
        • Fu S.
        • Luan J.
        • Xin M.
        • Wang Q.
        • Xiao R.
        • Gao Y.
        Fate of adipose-derived stromal vascular fraction cells after co-implantation with fat grafts: evidence of cell survival and differentiation in ischemic adipose tissue.
        Plast Reconstr Surg. 2013; 132: 363-373
        • Paik K.J.
        • Zielins E.R.
        • Atashroo D.A.
        • et al.
        Studies in fat grafting: part V. Cell-assisted lipotransfer to enhance fat graft retention is dose dependent.
        Plast Reconstr Surg. 2015; 136: 67-75
        • Klar A.S.
        • Guven S.
        • Biedermann T.
        • et al.
        Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells.
        Biomaterials. 2014; 35: 5065-5078
        • Barba M.
        • Cicione C.
        • Bernardini C.
        • Michetti F.
        • Lattanzi W.
        Adipose-derived mesenchymal cells for bone regereneration: state of the art.
        Biomed Res Int. 2013; 2013: 416391
        • di Summa P.G.
        • Kingham P.J.
        • Raffoul W.
        • Wiberg M.
        • Terenghi G.
        • Kalbermatten D.F.
        Adipose-derived stem cells enhance peripheral nerve regeneration.
        J Plast Reconstr Aesthet Surg. 2010; 63: 1544-1552
        • You H.J.
        • Han S.K.
        Cell therapy for wound healing.
        J Korean Med Sci. 2014; 29: 311-319
        • Han S.K.
        • Kim H.R.
        • Kim W.K.
        The treatment of diabetic foot ulcers with uncultured, processed lipoaspirate cells: a pilot study.
        Wound Repair Regen. 2010; 18: 342-348
        • Pereira Lopes F.R.
        • Lisboa B.C.
        • Frattini F.
        • et al.
        Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy.
        Neuropathol Appl Neurobiol. 2011; 37: 600-612
        • Badylak S.F.
        The extracellular matrix as a scaffold for tissue reconstruction.
        Semin Cell Dev Biol. 2002; 13: 377-383
        • Bosman F.T.
        • Stamenkovic I.
        Functional structure and composition of the extracellular matrix.
        J Pathol. 2003; 200: 423-428
        • Alberts B.
        Molecular biology of the cell.
        4th ed. Garland Science, , New York2002 (xxxiv, 1548)
        • Sheetz M.P.
        • Felsenfeld D.P.
        • Galbraith C.G.
        Cell migration: regulation of force on extracellular-matrix-integrin complexes.
        Trends Cell Biol. 1998; 8: 51-54
        • Friedl P.
        • Zanker K.S.
        • Brocker E.B.
        Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function.
        Microsc Res Tech. 1998; 43: 369-378
        • Bauer A.L.
        • Jackson T.L.
        • Jiang Y.
        Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis.
        PLoS Comput Biol. 2009; 5: e1000445
        • Choi J.S.
        • Yang H.J.
        • Kim B.S.
        • et al.
        Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering.
        J Control Release. 2009; 139: 2-7
      1. H. Debels, Gerrand YW, Poon CJ, Abberton KM, Morrison WA, Mitchell GM. An adipogenic gel for surgical reconstruction of the subcutaneous fat layer in a rat model, J Tissue Eng Regen Med, http://dx.doi.org/10.1002/term.2025. Online Version of Record published before inclusion in an issue

        • Choi J.H.
        • Bellas E.
        • Vunjak-Novakovic G.
        • Kaplan D.L.
        Adipogenic differentiation of human adipose-derived stem cells on 3D silk scaffolds.
        Methods Mol Biol. 2011; 702: 319-330
        • Chernousov M.A.
        • Yu W.M.
        • Chen Z.L.
        • Carey D.J.
        • Strickland S.
        Regulation of Schwann cell function by the extracellular matrix.
        Glia. 2008; 56: 1498-1507
        • Brown B.N.
        • Londono R.
        • Tottey S.
        • et al.
        Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials.
        Acta Biomater. 2012; 8: 978-987
        • Mills S.
        • Cowin A.
        • Kaur P.
        Pericytes, mesenchymal stem cells and the wound healing process.
        Cells. 2013; 2: 621-634
        • Caplan A.I.
        • Correa D.
        The MSC: an injury drugstore.
        Cell Stem Cell. 2011; 9: 11-15
        • Narayanan A.
        • Page R.
        • Swanson J.
        Regulation by transforming growth factor-fl in the presence of other inflammatory mediators.
        Biochem J. 1989; 260: 463-469
        • Newman A.C.
        • Nakatsu M.N.
        • Chou W.
        • Gershon P.D.
        • Hughes C.C.
        The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation.
        Mol Biol Cell. 2011; 22: 3791-3800
        • Newman A.C.
        • Chou W.
        • Welch-Reardon K.M.
        • et al.
        Analysis of stromal cell secretomes reveals a critical role for stromal cell–derived hepatocyte growth factor and fibronectin in angiogenesis.
        Arterioscler Thromb Vasc Biol. 2013; 33: 513-522
        • Bianchi F.
        • Maioli M.
        • Leonardi E.
        • et al.
        A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates.
        Cell Transpl. 2013; 22: 2063-2077
        • Traktuev D.O.
        • Merfeld-Clauss S.
        • Li J.
        • et al.
        A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks.
        Circ Res. 2008; 102: 77-85