Advertisement
Research Article| Volume 65, ISSUE 5, P657-664, May 2012

Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps

Published:December 05, 2011DOI:https://doi.org/10.1016/j.bjps.2011.11.035

      Summary

      The effect of differentiated and undifferentiated adipose-derived stem cells on the repair of peripheral nerve gaps was studied. Adipose-derived stem cells were maintained in differentiation medium for 2 weeks. The expression of Schwann cell proteins S-100, nerve growth factor receptor (NGFR) p75 and integrin β4 was examined by immunofluorescence staining and real time-polymerase chain reaction (real time-PCR) at the end of the differentiation period. A 10-mm gap on the left sciatic nerves of 20 Fischer rats was created and bridged with silicone tube (group I), silicone tube filled with collagen gel (group II), nerve graft (group III), silicone tube filled with adipose-derived stem cells (group IV) and silicone tube filled with differentiated adipose-derived stem cells (group V). In vitro, the positivity of differentiated adipose-derived stem cells for S-100, NGFR p75 and integrin β4 by immunofluorescence staining was 31%, 27% and 12%, respectively. Fold changes by real time-PCR in comparison with undifferentiated cells were 48.4, 168.7 and 284.85, respectively. In vivo, a walking track analysis did not yield any statistically significant differences after 3 months postoperatively; however, after 6 months, group IV (sciatic function index (SFI) = −49.1 ± 13.1) and V (SFI = −52.6 ± 5.7) showed significant improvement compared to other groups (I: −73.3 ± 5.07, II: −79.6 ± 12.01, III: −74.8 ± 12.89) (p < 0.05). Nerve conduction velocity after 6 months was higher in groups IV (4.44 ± 0.3 mm ms−1), V (4.25 ± 0.3 mm ms−1) and III (4 ± 0.3 mm ms−1) than in groups I (2.5 ± 2.25 mm ms−1) and II (2.35 ± 1.58 mm ms−1) (p > 0.05). Myelin fibre density and myelinated fibre/unmyelinated fibre ratio were significantly higher in the midnerve and the distal nerve in groups IV and V (p < 0.05). These results reveal the therapeutic potential of adipose-derived stem cells in nerve reconstruction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Plastic, Reconstructive & Aesthetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kline D.G.
        Surgical repair of peripheral nerve injury.
        Muscle Nerve. 1990; 13: 843-852
        • Whitlock E.L.
        • Tuffaha S.H.
        • Luciano J.P.
        • et al.
        Processed allografts and type I collagen conduits for repair of peripheral nerve gaps.
        Muscle Nerve. 2009; 39: 787-799
        • Ogawa R.
        • Mizuno H.
        • Watanabe A.
        • Migita M.
        • Shimada T.
        • Hyakusoku H.
        Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice.
        Biochem Biophys Res Commun. 2004; 313: 871-877
        • De Medinaceli L.
        • Freed W.J.
        • Wyatt R.J.
        An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks.
        Exp Neurol. 1982; 77: 634-643
        • Sofroniew M.V.
        • Howe C.L.
        • Mobley W.C.
        Nerve growth factor signaling, neuroprotection, and neural repair.
        Annu Rev Neurosci. 2001; 24: 1217-1281
        • Bain J.R.
        • Mackinnon S.E.
        • Hunter D.A.
        Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat.
        Plast Reconstr Surg. 1989; 83: 129-138
        • Cui L.
        • Jiang J.
        • Wei L.
        • et al.
        Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats.
        Stem Cells. 2008; 26: 1356-1365
        • Longo F.M.
        • Manthorpe M.
        • Skaper S.D.
        • Lundborg G.
        • Varon S.
        Neuronotrophic activities accumulate in vivo within silicone nerve regeneration chambers.
        Brain Res. 1983; 261: 109-116
        • Shimizu S.
        • Kitada M.
        • Ishikawa H.
        • Itokazu Y.
        • Wakao S.
        • Dezawa M.
        Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property.
        Biochem Biophys Res Commun. 2007; 359: 915-920
        • Lundborg G.
        • Dahlin L.B.
        • Danielsen N.
        • et al.
        Nerve regeneration in silicone chambers: influence of gap length and of distal stump components.
        Exp Neurol. 1982; 76: 361-375
        • Zuk P.A.
        • Zhu M.
        • Mizuno H.
        • et al.
        Multilineage cells from human adipose tissue: implications for cell-based therapies.
        Tissue Eng. 2001; 7: 211-228
        • Kingham P.J.
        • Kalbermatten D.F.
        • Mahay D.
        • Armstrong S.J.
        • Wiberg M.
        • Terenghi G.
        Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro.
        Exp Neurol. 2007; 207: 267-274
        • Tohill M.
        • Mantovani C.
        • Wiberg M.
        • Terenghi G.
        Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration.
        Neurosci Lett. 2004; 362: 200
        • Mimura T.
        • Dezawa M.
        • Kanno H.
        • Sawada H.
        • Yamamoto I.
        Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats.
        J Neurosurg. 2004; 101: 806-812
        • Dezawa M.
        • Takahashi I.
        • Esaki M.
        • Takano M.
        • Sawada H.
        Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells.
        Eur J Neurosci. 2001; 14: 1771-1776
        • Keilhoff G.
        • Goihl A.
        • Stang F.
        • Wolf G.
        • Fansa H.
        Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells.
        Tissue Eng. 2006; 12: 1451-1465
        • Keilhoff G.
        • Goihl A.
        • Langnase K.
        • Fansa H.
        • Wolf G.
        Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells.
        Eur J Cell Biol. 2006; 85: 11-24
        • Deng W.
        • Obrocka M.
        • Fischer I.
        • Prockop D.J.
        In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP.
        Biochem Biophys Res Commun. 2001; 282: 148-152
        • Mosahebi A.
        • Woodward B.
        • Wiberg M.
        • Martin R.
        • Terenghi G.
        Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration.
        Glia. 2001; 34: 8-17
        • Murakami T.
        • Fujimoto Y.
        • Yasunaga Y.
        • et al.
        Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair.
        Brain Res. 2003; 974: 17-24
        • Marchesi C.
        • Pluderi M.
        • Colleoni F.
        • et al.
        Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection.
        Glia. 2007; 55: 425-438
        • Henry E.W.
        • Chiu T.H.
        • Nyilas E.
        • Brushart T.M.
        • Dikkes P.
        • Sidman R.L.
        Nerve regeneration through biodegradable polyester tubes.
        Exp Neurol. 1985; 90: 652-676
        • Zuk P.A.
        • Zhu M.
        • Ashjian P.
        • et al.
        Human adipose tissue is a source of multipotent stem cells.
        Mol Biol Cell. 2002; 13: 4279-4295
        • Tobita M.
        • Uysal A.C.
        • Ogawa R.
        • Hyakusoku H.
        • Mizuno H.
        Periodontal tissue regeneration with adipose-derived stem cells.
        Tissue Eng Part A. 2008; 14: 945-953
        • Safford K.M.
        • Hicok K.C.
        • Safford S.D.
        • et al.
        Neurogenic differentiation of murine and human adipose-derived stromal cells.
        Biochem Biophys Res Commun. 2002; 294: 371-379
        • Fujimura J.
        • Ogawa R.
        • Mizuno H.
        • Fukunaga Y.
        • Suzuki H.
        Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice.
        Biochem Biophys Res Commun. 2005; 333: 116-121
        • Takahashi J.
        • Palmer T.D.
        • Gage F.H.
        Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures.
        J Neurobiol. 1999; 38: 65-81
        • Cohen R.I.
        • McKay R.
        • Almazan G.
        Cyclic AMP regulates PDGF-stimulated signal transduction and differentiation of an immortalized optic-nerve-derived cell line.
        J Exp Biol. 1999; 202: 461-473
        • Shah N.M.
        • Groves A.K.
        • Anderson D.J.
        Alternative neural crest cell fates are instructively promoted by TGF beta superfamily members.
        Cell. 1996; 85: 331-343
        • Di Summa P.G.
        • Kingham P.J.
        • Raffoul W.
        • Wiberg M.
        • Terenghi G.
        • Kalbermatten D.F.
        Adipose-derived stem cells enhance peripheral nerve regeneration.
        J Plast Reconstr Aesthet Surg. 2010; 63: 1544-1552
        • Rehman J.
        • Traktuev D.
        • Li J.
        • et al.
        Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells.
        Circulation. 2004; 109: 1292-1298
        • Choi B.H.
        • Zhu S.J.
        • Kim S.H.
        • et al.
        Nerve repair using a vein graft filled with collagen gel.
        J Reconstr Microsurg. 2005; 21: 267-272
        • Braun R.M.
        Experimental peripheral nerve repair tubulation.
        Surg Forum. 1964; 15: 452-454
        • Lee D.Y.
        • Choi B.H.
        • Park J.H.
        • et al.
        Nerve regeneration with the use of a poly(l-lactide-co-glycolic acid)-coated collagen tube filled with collagen gel.
        J Craniomaxillofac Surg. 2006; 34: 50-56
        • Meek M.F.
        • Coert J.H.
        Clinical use of nerve conduits in peripheral nerve repair: review of the literature.
        J Reconstr Microsurg. 2002; 18: 97-109