Advertisement
Research Article| Volume 65, ISSUE 2, P240-248, February 2012

The effect of surgical and chemical denervation on ischaemia/reperfusion injury of skeletal muscle

Published:September 26, 2011DOI:https://doi.org/10.1016/j.bjps.2011.09.005

      Summary

      Introduction

      Denervation decreases skeletal muscle’s energy needs and alters its metabolism and circulation. Our study was designed in two stages to investigate the effects of surgical and chemical denervation on the ischaemia/reperfusion injury of skeletal muscle. Degenerative histological analysis, apoptosis scoring and tissue levels of malonyl-di-aldehyde (MDA) and nitric oxide end products (NOx) were studied to understand the extent of ischaemia/reperfusion injury of skeletal muscles.

      Materials–methods

      In the first stage, the effect of surgical denervation was investigated in four groups each containing six rats. The right biceps femoris muscle was used as the experimental muscle flap model. In the control group, only the ischaemia/reperfusion cycle was applied. Ischaemia was created by a tourniquet strictly wrapping the right lower extremity for 4 h. After ischaemia, the tourniquet was cut, and the extremity was reperfused for another 4 h. In the experimental groups, surgical denervation was applied 1 day, 7 days and 30 days before the ischaemia/reperfusion cycle.
      On the second stage, the effect of chemical denervation with botulinum toxin type-A (BoNT-A) was investigated in three groups, each containing six rats. In the experimental groups, BoNT-A was applied 1 day, 7 days and 30 days before the ischaemia/reperfusion cycle.

      Results

      The control group had the worst scores in all experiment parameters. Degenerative histology and apoptosis scores were significantly better in groups to which BoNT-A and SD were applied 1 or 7 days before the ischaemia/reperfusion cycle. Regarding tissue levels of MDA and NOx, the experiment groups had significantly better scores comparing to the control group.

      Conclusion

      Both surgical and chemical denervation applied before muscle transfer increased muscle ischaemia tolerance. With similar experimental outcomes, denervation with BoNT-A can be preferred to surgical denervation because of its abundant clinical availability and it can be applied without any secondary surgery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Plastic, Reconstructive & Aesthetic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blaisdell F.W.
        The pathophysiology of skeletal muscle ischaemia and the reperfusion syndrome: a review.
        Cardiovasc Surg. 2002; 10 ([Review]): 620-630
        • Kirschner R.E.
        • Fyfe B.S.
        • Hoffman L.A.
        • Chiao J.J.C.
        • Davis J.M.
        • Fantini G.A.
        Ischemia-reperfusion injury in myocutaneous flaps: role of leukocytes and leukotrienes.
        Plast Reconstr Surg. 1997; 99: 1485-1493
        • Kerrigan C.L.
        • Stotland M.A.
        Ischemia reperfusion injury: a review.
        Microsurgery. 1993; 14: 165-175
        • Labbe R.
        • Lindsay T.
        • Walker P.M.
        The extent and distribution of skeletal muscle necrosis after graded periods of complete ischemia.
        J Vasc Surg. 1987; 6: 152-157
        • Wang W.Z.
        • Fang X.H.
        • Stephenson L.L.
        • Khiabani K.T.
        • Zamboni W.A.
        Ischemia/reperfusion-induced necrosis and apoptosis in the cells isolated from rat skeletal muscle.
        J Orthop Res. 2008 Mar; 26: 351-356
        • Marnett L.J.
        Lipit peroxidation-DNA damage by malondialdehyde.
        Mutat Res. 1999 Mar 8; 424 ([Review]): 83-95
        • Chen H.Y.
        • Hung Y.C.
        • Lee E.J.
        • Chen T.Y.
        • Chuang I.C.
        • Wu T.S.
        The protective efficacy of magnolol in hind limb ischemia-reperfusion injury.
        Phytomedicine. 2009 Jul 3; ([Epub ahead of print] PubMed PMID: 19577912)
        • DuBois D.C.
        • Max S.R.
        Effect of denervation and reinnervation on oxidation of [6-14C] glucose by rat skeletal muscle homogenates.
        J Neurochem. 1983 Mar; 40: 727-733
        • Davis T.A.
        • Karl I.E.
        Resistance of protein and glucose metabolism to insulin in denervated rat muscle.
        Biochem J. 1988 Sep 15; 254: 667-675
        • Kauffman F.C.
        • Albuquerque E.X.
        Effect of ischemia and denervation on metabolism of fast and slow mammalian skeletal muscle.
        Exp Neurol. 1970; 28: 46-63
        • Banbury J.
        • Siemionow M.
        • Porvasnik S.
        • et al.
        Muscle flaps’ triphasic microcirculatory response to sympathectomy and denervation.
        Plast Reconstr Surg. 1999; 104: 730-737
        • Huang W.
        • Foster J.A.
        • Rogachefsky A.S.
        Pharmacology of botulinum toxin.
        J Am Acad Dermatol. 2000; 43: 249-259
        • Arnold P.B.
        • Merritt W.
        • Rodeheaver G.T.
        • Campbell C.A.
        • Morgan R.F.
        • Drake D.B.
        Effects of perivascular botulinum toxin-A application on vascular smooth muscle and flap viability in the rat.
        Ann Plast Surg. 2009 May; 62: 463-467
        • Van Beek A.L.
        • Lim P.K.
        • Gear A.J.
        • Pritzker M.R.
        Management of vasospastic disorders with botulinum toxin A.
        Plast Reconstr Surg. 2007; 119: 217-226
        • Arnold P.B.
        • Campbell C.A.
        • Rodeheaver G.
        • Merritt W.
        • Morgan R.F.
        • Drake D.B.
        Modification of blood vessel diameter following perivascular application of botulinum toxin-a.
        Hand (N Y). 2009 Sep; 4 (Epub 2009 Feb 5): 302-307
        • Neumeister M.W.
        • Chambers C.B.
        • Herron M.S.
        • et al.
        Botox therapy for ischemic digits.
        Plast Reconstr Surg. 2009 Jul; 124: 191-201
        • Fregene A.
        • Ditmars D.
        • Siddiqui A.
        Botulinum toxin type A: a treatment option for digital ischemia in patients with Raynaud’s phenomenon.
        J Hand Surg Am. 2009 Mar; 34: 446-452
        • Matic D.B.
        • Lee T.Y.
        • Wells R.G.
        • Gan B.S.
        The effects of botulinum toxin type A on muscle blood perfusion and metabolism.
        Plast Reconstr Surg. 2007 Dec; 120: 1823-1833
        • Yildirim A.M.
        • Okur I.
        • Orter Z.
        • Uysal A.
        Nonsurgical delay of dorsal rat cutaneous flap using botulinum toxin type A.
        Plast Reconstr Surg. 2008 Jul; 122: 53e-54e
        • Kim T.K.
        • Oh E.J.
        • Chung J.Y.
        • Park J.W.
        • Cho B.C.
        • Chung H.Y.
        The effects of Botulinum toxin A on the survival of a random cutaneous flap.
        J Plast Reconstr Aesthet Surg. 2009 Jul; 62 (Epub 2008 Apr 24): 906-913
        • Lee R.C.
        • River L.P.
        • Pan F.S.
        • Ji L.
        • Wollmann R.L.
        Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo.
        Proc Natl Acad Sci USA. 1992 May 15; 89: 4524-4528
        • Yenidunya M.O.
        • Tsukagoshi T.
        • Morioka D.
        • Hosaka Y.
        An axial-pattern skin flap in the rat.
        J Reconstr Microsurg. 1998 Aug; 14: 383-386
        • Akyürek M.
        • Safak T.
        • Manavbaşi I.
        • Keçik A.
        A rat musculocutaneous flap model: the biceps femoris musculocutaneous flap.
        Ann Plast Surg. 2000 Sep; 45: 305-312
        • Coşkunfirat O.K.
        • Islamoğlu K.
        • Ozgentaş H.E.
        Posterior thigh perforator-based flap: a new experimental model in rats.
        Ann Plast Surg. 2002 Mar; 48: 286-291
      1. Mehmet Bayramiçli Biseps Femoris Kas ve Kas-Deri Flebleri sy 241-247 Deneysel Mikrocerrahi, Mayıs 2005.

        • Pilz J.
        • Meineke I.
        • Gleiter G.H.
        Measurement of free and bound malondialdehyde in plasma by high performance liquid chromatography as the 2,4 dinitrophenylhydrazine derivative.
        J Chromatogr B Biomed Sci Appl. 2000; 9: 315-325
        • Miranda K.M.
        • Espey M.G.
        • Wink D.A.
        A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite.
        Nitric Oxide. 2001; 5: 62-71
        • Billante C.R.
        • Zealear D.L.
        • Billante M.
        • et al.
        Comparison of neuromuscular blockade and recovery with botulinum toxins A and F.
        Muscle Nerve. 2002 Sep; 26: 395-403
        • Sketelj J.
        • Crne-Finderle N.
        • Sket D.
        • Dettbarn W.D.
        • Brzin M.
        Comparison between the effects of botulinum toxin-induced paralysis and denervation on molecular forms of acetylcholinesterase in muscles.
        J Neurochem. 1993 Aug; 61: 501-508
        • Fu K.
        • Izkuibrdo R.
        • Walenga J.M.
        • Fareed J.
        Comparative study on the use of anticoagulants: heparin and recombinant hirudin in a rabbit traumatic anastomosis model.
        Thromb Res. 1995; 78: 421-428
        • Schlaudraff K.U.
        • Bezzola T.
        • Montandon D.
        • Pepper M.S.
        • Pittet B.
        Mixed arterio-venous insufficiency in random skin flaps in the rat: is the application of medicinal leeches beneficial?.
        J Surg Res. 2008 Nov; 150: 85-91
        • Basile A.P.
        • Fiala T.G.
        • Yaremshuk M.J.
        • May J.W.
        The antithrombotic effects of ticlopidine and aspirin in a microvascular thrombogenic model.
        Plast Reconstr Surg. 1995; 92: 1258-1264
        • Aşkar İ
        • Bozkurt M.
        Protective effects of immunosuppressants and steroids against ischemia-reperfusion injury in cremaster muscle flap at microcirculatory level.
        Microsurgery. 2002; 22: 361-366
        • Sagi A.
        • Ferder M.
        • Levens D.
        • Strauch B.
        Improved survival of island flaps after prolonged ischemia by perfusion with superoxide dismutase.
        Plast Reconstr Surg. 1986; 77: 639-644
        • Cordeiro P.G.
        • Mastorakos D.P.
        • Hu Q.Y.
        • Kirschner R.E.
        The protective effect of L-arginine on ischemia-reperfusion injury in rat skin flaps.
        Plast Reconstr Surg. 1997; 100: 1227-1233
        • Khiabani K.T.
        • Kerrigan C.L.
        The effects of the nitric oxide donor SIN-1 on ischemia-reperfused cutaneous and myocutaneous flaps.
        Plast Reconstr Surg. 2002; 110: 169-176
        • Mowlavi A.
        • Ghavami A.
        • Song Y.H.
        • Neumeister M.
        Limited use of cyclosporin A in skeletal muscle ischemia-reperfusion injury.
        Ann Plast Surg. 2001; 46: 426-430
        • O’Sgaughnessy M.
        • Anderson G.L.
        • Acland R.D.
        • Barker J.H.
        Platelet-derived thromboxane A2 decreases microvascular perfusion after arterial repair.
        Plast Reconstr Surg. 1997; 99: 834-841
        • Stotland M.A.
        • Kerrigan C.L.
        The role of platelet activating factors in musculocutaneous flap perfusion injury.
        Plast Reconstr Surg. 1997; 99: 1989-1999
        • Türegün M.
        • Güdemez E.
        • Newman P.
        • Zins J.
        • Siemionow M.
        Blockade of platelet endothelial cell adhesion molecule-1 (PECAM-1) protects against ischemia reperfusion injury in muscle flaps at microcirculatory level.
        Plast Reconstr Surg. 1999; 104: 1033-1040
        • Ayhan S.
        • Tugay C.
        • Norton S.
        • Araneo B.
        • Siemionow M.
        Dehydroepiandrosterone protects the microcirculation of muscle flaps from ischemia-reperfusion injury by reducing the expression of adhesion molecules.
        Plast Reconstr Surg. 2003; 111: 2286-2294
        • Adanalı G.
        • Özer K.
        • Siemionow M.
        Early and late effects of ischemic preconditioning on microcirculation of skeletal muscle flaps.
        Plast Reconstr Surg. 2002; 109: 1344-1351
        • Küntscher M.V.
        • Schirmbeck E.U.
        • Menke H.
        • Klar E.
        • Gebhard M.M.
        • Germann G.
        Ischemic preconditioning by brief extremity ischemia before flap ischemia in a rat model.
        Plast Reconstr Surg. 2002; 109: 2398-2404
        • Pellegrino C.
        • Franzini C.
        An electron microscope study of denervation atrophy in red and white skeletal muscle fibers.
        J Cell Biol. 1963; 17: 327-349
        • Hagerty R.
        • Bostwick III, J.
        • Nahai F.
        Denervated muscle flaps: mass and thickness changes following denervation.
        Ann Plast Surg. 1984; 12: 171-176
        • Lu D.X.
        • Huang S.K.
        • Carlson B.M.
        Electron microscopic study of long-term denervated rat skeletal muscle.
        Anat Rec. 1997 Jul; 248: 355-365
        • Borisov A.B.
        • Carlson B.M.
        Cell death in denervated skeletal muscle is distinct from classical apoptosis.
        Anat Rec. 2000 Mar 1; 258: 305-318
        • Elmas C.
        • Ayhan S.
        • Tuncer S.
        • et al.
        Effect of fresh and stored botulinum toxin a on muscle and nerve ultrastructure: an electron microscopic study.
        Ann Plast Surg. 2007 Sep; 59: 316-322
        • Chuang Y.C.
        • Tu C.H.
        • Huang C.C.
        • et al.
        Intraprostatic injection of botulinum toxin type-A relieves bladder outlet obstruction in human and induces prostate apoptosis in dogs.
        BMC Urol. 2006 Apr 18; 6: 12
        • Matarasso A.
        • Deva A.K.
        American society of plastic surgeons DATA committee. Botulinum toxin.
        Plast Reconstr Surg. 2002 Mar; 109 ([Review]): 1191-1197
        • Welham N.V.
        • Marriott G.
        • Tateya I.
        • Bless D.M.
        Proteomic changes in rat thyroarytenoid muscle induced by botulinum neurotoxin injection.
        Proteomics. 2008 May; 8: 1933-1944